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In addition to demographic concerns, genetic varia­
tion is often viewed as an important consideration in 
determining the viability of natural populations (e.g., 
Lande, 1988). Low levels of genetic variation due to 
random genetic drift or inbreeding, exacerbated by re­
duced population sizes or limited migration from geneti­
cally distinct populations , may decrease individual vi­
ability or fecundity or increase the risk of population 
extinction when environments change. Indeed, very low 
levels of inter- and intra-populational genetic variation 
are often indicative of species that exhibit extreme fluc­
tuations in population size over time, making them sus­
ceptible to declines. Overexploitation, habitat destruc­
tion, pollution, and climate change thus can each play a 
fundamental role in delimiting the extent of genetic 
variation in, and hence the viability of, natural popula­
tions . These factors are particularly relevant in a conser­
vation context because threatened and endangered popu­
lations or species are characterized by limited numbers 
of individuals or reduced levels of interpopulational 
migration (i.e., fragmentation). 

Examinations of intraspecific genetic variation in a 
wide variety of turtle species have typically documented 
low levels of among-population divergence (Seidel et 
al., 198l;Scribneretal., 1986;Lambetal., 1989, 1994; 
A vise et al., 1992; Bowen et al., 1992; Karl et al., 1992; 
Lamb and Avise, 1992; Parker and Whiteman, 1993; 

Allard et al., 1994; Phillips et al., 1996) . These observa­
tions have led to the suggestion that turtles in general 
may possess an intrinsically slower rate of molecular 
evolution than other taxa (e.g., Avise et al., 1992) . 
Because low levels of genetic differentiation seem to 
characterize turtles and because many species are in need 
of conservation measures, identification of genetically 
distinct populations of turtles is singularly important in 
guiding conservation strategies of many taxa. 

The main objective of this study was to evaluate 
molecular genetic differentiation among populations of 
the western pond turtle (Clemmys marmorata) (Fig. 1). A 
particular focus of this study was to identify potentially 
unique populations that might require special conserva­
tion management because C. marmorata is in serious 
decline throughout most of its range (reviewed in Gray, 
1995). We first conducted an overview of genetic varia­
tion in the entire species, using individuals from popula­
tions in Washington, Oregon, Nevada, and California 
(USA), and Baja California (Mexico). Subsequently, we 
analyzed many populations from within a restricted geo­
graphic range (Oregon) to address possible 
microgeographic genetic differentiation in the species. 

Materials and Methods. - The vast majority of 
tissue samples used in this study were collected through­
out the range of C. marmorata by Dan Holland (Holland, 
1992). The tissues were stored in liquid nitrogen before 
being shipped to the laboratory (University of Califor­
nia, Davis) where they were maintained at-80°C. For the 
initial molecular analyses reported here, we chose 76 
representative individuals from throughout the entire 
range of the species (50 from Oregon and the rest from 
elsewhere). 

DNA was extracted from frozen turtle tissue (usu­
ally tail tips obtained nonlethally) using standard phenol/ 
chloroform methods. We used uni versa! primers (L 14841 
and Hl5149 from Kocher et al., 1989) to amplify a 307 
bp region of the cytochrome b gene in the mtDNA, again 
following standard procedures (Kocher et al., 1989) . For 
SSCP (single-strand conformation polymorphism) analy­
sis (Orita et al., 1989), we ran samples of the double­
stranded PCR products on non-denaturing 1 X MDE gels 
with 5% glycerol for 12 hrs at 8 watts at l 5°C. These gels 
were subsequently silver stained (Aguade et al., 1994) to 
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visualize the bands . We adopted this technique because 
it was faster and less expensive than direct sequencing 
for screening large numbers of individuals for genetic 
differences as small as a single base pair. Where SSCP 
analysis indicated a potentially new haplotype repre­
sented by either a new mobility class or a band with a 
different phenotype on a gel, we manually sequenced the 
entire 307 bp segment of cytochrome b following the 
methods of Shaffer and McKnight ( 1996) to characterize 
this genetic variation . This procedure was modified some­
what for the more intensive analysis of Oregon C. 
marmorata in that we amplified only a 180 bp region of 
cytochrome b using the primer H 15149 from Kocher et 
al. (1989) and a primer developed in our laboratory, cyt 
b 4 (5' CTA CTG ATG AGA ATG CTA GT 3'), that 
occurs between the two universal Kocher primers. We 
used this smaller segment of cytochrome b for subse­
quent SSCP analysis rather than the full 307 bp fragment 

- because it increased our likelihood of detecting subtle 
genetic variation between individuals in this region of 
the mtDNA. 

Results . - Based on SSCP analysis, most individu­
als of C. marmorata exhibited the same genotype for 
cytochrome b . However, several unique genetic variants 
were identified , mainly from populations in southern 
coastal California and Baja California. Sequencing of 
this mtDNA segment for these unique populations has 
yet to be completed, but preliminary analyses suggest 
that the genetic differences may be small. For example, 
comparison of the 307 bp sequences from single turtles 
from Washington, Nevada, and San Luis Obispo , Tulare, 
and Santa Barbara counties in California indicated that 
only the Santa Barbara individual was distinct (by a 
single base-pair substitution) . 

The more extensive analyses of C. marmorata from 
Oregon largely confirmed the species-wide investiga­
tion. Of the 50 turtles examined from throughout the 
state (Benton, Douglass, Lane, Curry, and Wasco coun­
ties, and the Willamette Valley drainage), only two 
genotypes different than the common one were observed . 
One population from a west-flowing coastal stream in 

Figure 1. An adult Clemmys marmorata from Hastings Reserva­
tion , Monterey County, California . Photograph by H.B . Shaffer. 

Curry Co . and another from the Willamette Valley were 
genetically distinct from the other Oregon populations 
examined . The level of sequence divergence for the 
Curry Co. population is currently unknown , because it 
has yet to be sequenced; the Willamette Valley popula­
tion differed from the standard genotype by a single 
base-pair substitution. 

Discussion . - Based on our preliminary analysis , 
the SSCP and sequencing results are consistent with the 
current morphologically based description of two sub­
species of C. marmorata , one north (C. m. marmorata) 
and one south (C. m. pallida) of central California . 
Furthermore, the Baja California turtles produced mark­
edly distinct bands in the SSCP analysis, suggesting that 
these populations may be quite divergent as well. 

Our results for C. marmorata are consistent with 
those of population-level molecular studies of other 
turtle species . As in our study, relatively little genetic 
differentiation has been detected among populations 
even across considerable geographic ranges for a broad 
assortment of turtle taxa (Seidel et al., 1981; Scribner et 
al., 1986; Lamb et al., 1989, 1994 ; Avise et al., 1992; 
Bowen et al., 1992; Karl et al., 1992; Lamb and Avise, 
1992; Parker and Whiteman , 1993; Allard et al. , 1994; 
Phillips et al., 1996). Of particular note , our findings are 
largely concordant with those obtained in a DNA finger­
printing study of C. marmorata (Gray, 1995) . These 
genetic results overall may reflect an inherently lower 
rate of molecular evolution in turtles (e.g., A vise et al., 
1992) , recent migration events within the ranges of many 
turtle species (e.g., Hewitt, 1996), or both . In any case, 
future molecular studies of intraspecific relationships of 
turtle populations may need to adopt techniques like 
genome-wide AFLP analyses (e.g. , Vos et al. , 1995) that 
are used for inferring higher-level geneological relation­
ships in other , faster-evolving taxa. 

Although we detected little overall genetic varia­
tion , our results do provide some insight into broadscale 
historical relationships among populations of C. 
marmorata . Southern populations , particularly in Baja 
California, may in fact be genetically different enough 
from the northern populations to warrant specific status . 
DNA sequencing has yet to be completed, but our SSCP 
results suggest that Baja California turtles are very dis­
tinct genetically from other populations . If the same 
criteria are used for C. marmorata as for other emydid 
species (e.g., Graptemys, see Lamb et al., 1994), even 
fixed differences of a few base pair substitutions be­
tween C. marmorata from Baja California and other 
populations may indicate species-level differentiation. 
This conclusion is also supported by the morphological 
differentiation between C. marmorata from Baja Cali­
fornia and those from the rest of the range (Seeliger, 
1945; Bury , 1970) . In fact, Seeliger (1945), who named 
the two currently recognized subspecies of C. marmorata 
based on morphology , found that western pond turtles 
from Baja California differed so much from the others 
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that "no attempt will be made to assign them to either 
subspecies." 

Regardless of whether western pond turtles from 
Baja California should be designated as a distinct spe­
cies, the genetic uniqueness of many southern popula­
tions of C. marmorata suggests that special care should 
be taken to preserve and manage them. If turtles exhibit 
a slow rate of molecular evolution (e.g. , Avise et al., 
1992), any documentable genetic differentiation in cyto­
chrome b is likely to signal relatively deep historical 
splits among populations and thus indicate their singular 
importance . Populations of western pond turtles have 
been declining for decades, and both northern and south­
ern populations have experienced drastic reductions and 
local extinctions (Gray, 1995). Given this pattern of 
population loss, combined with restricted levels of ge­
netic variation found throughout the species, we believe 
that protection of western pond turtle populations that 
exhibit genetic variation and differentiation represents 
an important component of the management of this de­
clining species. 

Beyond important conservation concerns, our re­
sults also have implications for the historical biogeogra­
phy of western pond turtles . Based on fossil evidence, 
Brattstrom and Sturn (1959) hypothesized that progeni­
tors of C. marmorata arose in the Paleocene of west­
central North America . The turtles were then supposed to 
have split in the Eocene, with individuals dispersing 
northwest and southwest, eventually occupying the cur­
rent range of the species by the beginning of the Pleis­
tocene (Brattstrom and Sturn, 1959) . Thus, populations 
of C. marmorata are hypothesized to have separated and 
then come back into secondary contact along the Pacific 
coast. This scenario is consistent with the distribution of 
the currently recognized subspecies and their intergrade 
zone in central California (Bury , 1970) . However, the 
minimal levels of genetic variation within and differen­
tiation among northern populations of C. marmorata 
(Gray, 1995; this study) may be more consistent with a 
scenario that invokes a recent northward invasion from a 
more ancient southern stock . This hypothesis could be 
tested by comparing homologous DNA sequences among 
species closely related to C. marmorata to determine the 
polarity of character changes and hence the phylogenetic 
relationships among western pond turtle populations . 
Southern populations should be more basal (and northern 
ones more derived) and paraphyletic with respect to a 
monophyletic northern group , if the northward migration 
hypothesis is correct. 

We see at least two future directions for molecular 
conservation genetic research on western pond turtles . 
First, additional specimens from populations in the south­
ern and coastal portions of the range need to be examined 
with SSCP methods and then all variants need to be 
sequenced. This approach would confirm or reject the 
hypothesis that these populations of C. marmorata are 
genetically distinct from the rest of the range and, if so, 

at what level. A second useful direction would be to 
employ a more rapidly evolving gene (e.g. , mtDNA 
control region) or a more sensitive molecular technique 
(e.g ., AFLP analysis) to examine population subdivision 
in C. marmorata. This approach might identify more 
subtle genetic differentiation among populations than 
can be detected with the more slowly evolving cyto­
chrome b gene and the SSCP technique. In either case, 
the results of future molecular work on C. marmorata 
will be a crucial supplement to our current knowledge 
base for making intelligent management decisions re­
garding this unique , but rapidly declining, species . 
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