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The study of movement and home range provides
insight into an organism’s activity and habitat utilization.
Initially such studies were conducted using long-term mark
recapture data and various trailing devices but since the
advent of small radio units, the main tool has been radiote-
lemetry. Spatial studies using radiotelemetry in turtles have
increased, emphasizing terrestrial (Schwartz et al., 1984;
Brewster and Brewster, 1991: Smith et al.. 1997, 1999),
semi-aquatic (Rowe and Moll, 1991: Lovich et al., 1992;
Buhlmann, 1995; Lewis and Faulhaber, 1999; Lue and
Chen, 1999: Goodman and Stewart, 2000; Piepgras and
Lang, 2000), and marine species (Seminoff et al., 2002).
Research on primarily aquatic species is most often concen-
trated on terrestrial forays and inter-populational move-
ments (Cagle, 1944; Sexton, 1959: Gibbons, 1970; Obbard
and Brooks. 1980; Congdon et al., 1983: Gibbons et al.,
1983, 1990; Buhlmann and Gibbons, 2001 ).

Although important in understanding activity and habi-
tat use. terrestrial movements comprise a small portion of
turtle activity throughout the entire season. For the majority
of the activity season, movements of freshwater turtles are
restricted to aquatic environments and are mainly driven by
resource acquisition (Moll and Legler, 1971: Schubauer et
al., 1990). Recognizing the need for research during the
aquatic period, several recent studies have dealt with the
aquatic activity of lotic species in riverine habitats (Kramer,
1995: Jones. 1996: Magnusson et al.. 1997: Plummer et al.,
1997). Contrastingly, little research has focused on aquatic
activity in lentic species inhabiting lacustrine systems
(Schubauer et al.. 1990). Such studies are essential for
providing a comprehensive understanding of movement
patterns and home range of freshwater turtles.

The river cooter. Pseudemys concinna, is a broadly
distributed species (Ernst et al., 1994; Seidel and Dreslik,
1996) occupying both riverine and lacustrine habitats
(Marchand. 1942; Fahey, 1987: Buhlmann and Vaughan,
1991: Dreslik. 1997, 1998) with previous radiotelemetric
research conducted on ariverine population (Buhlmann and
Vaughan, 1991). The objective of our study was to provide

an estimate of movement and home range area for a popula-
tion of P. concinna inhabiting a lacustrine system with the
emphasis on aquatic activity.

Methods, — Round Pond is a 24.5 ha member of a chain
of floodplain lakes located approximately 4 km west of the
confluence of the Ohio and Wabash rivers in southeastern
Gallatin County, lllinois. A detailed description of the habi-
tat has been published previously (Dreslik, 1997). We used
five single set fyke nets (Vogt, 1980) to capture turtles from
28 June to 29 July 1999. Fyke nets had a 107 cm diameter
mouth; two 5.2 mwings, a 15.2 mlead, and 3.8 cm mesh size.
We set nets parallel to the shoreline in a V-formation and
elevated the rear chamber of the trap with a floating air filled
plastic bottle to prevent drowning turtles accidentally. We
notched the marginal scutes of all turtles following Cagle
(1939), measured maximum plastral length (PL) with tree
calipers (to the nearest mm), and weight using an electronic
balance (to the nearest g). We used two-stage radio transmit-
ters with whip antennae weighing approximately 80 g con-
structed by L&L Electronics (Mahomet, [llinois). All adult
P. concinna captured were fitted with transmitter packages
mounted on the rear of the carapace on the fourth or fifth
pleural scute with the antennae facing posteriorly.

We radiolocated turtles daily between 0900-2000 hrs
but on a few occasions turtles were radiolocated twice per
day. When turtles were radiolocated twice per day, there was
atleastan 8 hrinterval between radiolocations. To determine
locations, we first recorded the GPS coordinates in Univer-
sal Transverse Mercator (UTM, NAD 83 map datum) for
two reference points with a Garmin® 12 CX with waypoint
averaging. To obtain the GPS location for each reference
site, we used the mean of ten separate waypoint averaged
measurements taken at each reference site. We placed a
system of marker buoys around the lake then triangulated the
location of each buoy to each reference location with com-
pass bearings. For each turtle location, we recorded compass
bearings to two marker buoys. All compass bearings were
then computed to UTM grid coordinates following the
triangulation methods outlined in White and Garrott (1990)
and the coordinates were input into Arc-View® 3.2a.

We calculated the mean and maximum distance be-
tween successive radiolocations and total distance moved.
To examine possible sample size biases in movement pa-
rameters, we regressed maximum, mean. and total distance
moved to the number of radiolocations with individuals as
the sampling unit. Minimum convex polygons (MCP:; Mohr,
1947) were constructed in Arc-View" 3.2a using the Animal
Movement extension (Hooge and Eichenlaub, 1997). We
selected the MCP method because of its simplicity, flexibil-
ity in shape, ease in calculation, and the minimal effects of
autocorrelated locations on polygon size (White and Garrott,
1990). However, there are two drawbacks to the MCP
method. First. home range estimates may increase indefi-
nitely with an increasing number of radiolocations (Jenrich
and Turner. 1969) and the polygon may include habitats
unavailable to the study organism. To address the first
drawback, we performed a regression on all MCP areas
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Table 1. Movement statistics (m), minimum convex polygon
(MCP) area (ha), and number of radiolocations for P. concinna
radiotracked at Round Pond, Gallatin County, Illinois. during
summer 1999. PL. = mm. mass = g.

Daily Movement MCP
PL Mass Max. Mean Total Area n
Females
Fl 198 1014 459 116 2437 46 22
F2 198 943 115 59 1353 1.8 24
F3 288 3500 622 118 1769 7.1 16
F4 213 1221 188 94 2248 35 25
F5 193 962 375 133 1328 9.2 11
F6 219 1315 173 77 1078 3.1 15
Mean 321.9 994 1702.1 49
St dev 197.3 28.8 546.6 2.8
Males
MI 241 1976 629 311 2179 — 8
M2 185 823 133 58 576 1.2 11
M3 197 1001 339 134 1841 34 16
Mean 3669 167.5 1531.8 53
Stdev 2492  130.1 8452 2.7
Grand Mean 336.9 122.1 16453 5.0
St dev 200.9 769 6103 26

versus the respective number of radiolocations to determine
if MCP area depended upon the number of radiolocations. If
a significant relationship occurs, then the MCP areas are
dependent upon the number of radiolocations and thus
biased. Our second approach used Incremental Area Analy-
sis (IAA), which pools all radiolocations for an individual,
then resamples using bootstrapping to generate a series of
home range estimates from 3 to n radiolocations (Hooge and
Eichenlaub, 1997). If the bootstrap estimates of home range
asymptote as the number of radiolocations increase, then a
sample size bias is not present with respect to an individual.
Because these are aquatic turtles tracked when overland
forays are expected to be minimal, we did not need to
consider potential habitat biases.

Results. — We radiolocated 6 female and 3 male adult
P. concinna 8 to 26 times each between 8 July and 29 July
1999 for an average duration of 2.5 weeks per turtle (Table
1). Our sample size was too small for statistical comparisons
of movement and home range area between sexes. Maxi-
mum (p = 0.309, = 0.146, n = 9). mean (p = 0,136, 1~ =
0.288,n=9), and total distance moved (p = 0.322. - = 0. 140.
n=9), were independent of sample size. On average. turtles
moved 122 m between successive radiolocations (Table ).
Despite having only 8 radiolocations. turtle M1 ranked third
in total distance moved and made the largest move (Table 1:
Fig. 1). Because male M1 moved into a privately owned
pond and did not return to Round Pond during the remainder
of the study. we were unable to make additional radioloca-
tions. On average, females moved less than males and male
movements appeared more variable (Table 1). However, if
M1 is considered an outlier, the standard deviations of
female and male movements are similar.

Overall. MCP area was an accurate measure of home
range size because it was independent of the number of
radiolocations (17 = 0.073, p =0.518. n = 8). Individually,

IAA revealed we required at least 15 radiolocations to
adequately determine home range area over this period.
Although F5 and M2 had the largest home ranges for each
sex, TAA determined that 11 radiolocations were inadequate
for representing home range area. The majority of the 148
radiolocations were clustered in the shallower northern half
of Round Pond (Fig. 1). However, some individuals (M1,
F3, F5) utilized the northern two-thirds of Round Pond (Fig.
1). Only 18 radiolocations were in open water > 6 m deep.
Discussion. — The majority of movements of P.
concinna were constrained within Round Pond’s boundaries
during the summer for two possible reasons. First. the habitat
may provide ample resources, which are not uniformly
distributed. Thus, movements between different aquatic
habitats and within different regions of the pond are unnec-
essary. Although this explanation does not account for
movements made in search of resources such as nesting sites
and mates, the effects of these factors are minimized in our
study because we focused on adults after the reproductive
and nesting season. The movements we observed may be
driven by foraging and thermal requirements. Primarily
herbivorous throughout its range (Ernst et al., 1994), P.
concinna is an algal specialist at Round Pound (Dreslik,
1999), thus food resources would be abundant in the shal-
lower regions of the pond where light can penetrate to the
benthos. This partially explains the concentration of loca-
tions in the shallower northern coves. Because no adults
have been observed basking emergently at Round Pond.
despite repeated surveys (Dreslik. unpubl. data), P. concinna
may use warm shallow water for aquatic thermoregulation.
Because there are limited reports of overland move-
ments in P. concinna, terrestrial environments may repre-
sent significant barriers (Minton. 1972). When aquatic envi-
ronments are in close proximity. shortover-land movements
are possible. M1 made a short overland movement of 100
190 m (the minimum and maximum distances separating the
ponds) from Round to Long Pond. Terrestrial movements of
male turtles between aquatic habitats in several other species
are well documented (Cagle, 1950; Sexton, 1959; Gibbons
et al.. 1990). Additionally, long-term studies indicate that
some individuals, especially semi-aquatic species, utilize
several aquatic habitats during their activity season and
lifetime (Buhlmann, 1995: Burke et al., 1995; Buhlmann
and Gibbons, 2001). Factors such as resource limitations,
unfavorable environmental conditions, and maximizing re-
productive success are postulated to drive inter-populational
movements (Morreale et al., 1984; Gibbons et al., 1990).
Because the overland distance between Round and Long
ponds is short, some individuals may routinely move be-
tween the adjacent ponds. Two adult females captured in
Long Pond in 1996 were subsequently recaptured in Round
Pond in 1997 (Dreslik, unpbul. data). Although these move-
ments may not represent overland travel because Round and
Long ponds connect during flood events, they provide
additional affirmation of individuals using both ponds.
Within an activity season, freshwater turtles are capable
of moving great distances with males often making the
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Figure 1. Radiolocation points, movement path (onl y for M1), and minimum convex polygons for all radiotracked Pseudemys concinna
at Round Pond, Gallatin County. Illinois, during summer 1999. Solid lines are roads and the banded line is a stream, a = marker buoys and
reference points. a) @ = F4. m = M2, » with numbers = M1. b) e = M3. m = F2. c)e=F5.m =F6,d)e=F| . m =F3.
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longest movements (MacCullough and Secoy, 1983:
Morreale et al., 1984; Pluto and Bellis, 1988). The variation
of intra-populational movements, however, has received
less attention than extra-populational movements (Gibbons
etal., 1990). On average, P. concinna at Round Pond moved
amaximum daily distance of 337 m. and total distance of 1.6
km. Mean daily movement was 122 m and based on limited
data, females moved shorter daily distances than males. In
comparison, daily movements of P. concinna inhabiting a
riverine situation were greater, averaging 340 m (Buhlmann
and Vaughan, 1991).

Three of our individuals moved = 500 m between
radiolocations. Inrivers, P. concinna moved distances greater
than 640 m between resightings and recaptures (Marchand,
1942), and a maximum movement of 777 m in the New
River, West Virginia has been documented (Buhlmann and
Vaughan, 1991). Further, some individuals in the New River
moved 574 m in response to the flooding of basking sites
(Buhlmann and Vaughan. 1991). Conversely, in the
Tallapoosa River, Alabama. recaptured P. concinna were
generally £ 100 m from their initial capture point (Fahey,
1987). The data suggest P. concinna is a vagile species
capable of long-distance aquatic movements within a short
time but to a lesser extent in lacustrine compared to riverine
situations.

Because home range area was independent of the num-
ber of radiolocations and IAA curves reached an asymptote
for all but two individuals, we conclude that our findings
accurately portray summer home range size in P. concinna.
Because of sample size limitations. we were unable to
statistically compare sexes but males and females had simi-
lar sized home ranges (5.3 and 4.9 ha, respectively). Our
home range estimates were larger than that of a population
in the New River (1.4 ha; Buhlmann and Vaughan, 1991).
Thus, turtles in Round Pond moved shorter distances within
a larger home range compared to a riverine population,
which moved greater distances within a smaller home range
(Buhlmann and Vaughan, 1991).

River cooters (P. concinna) were adept at moving
through their aquatic environment and capable of routinely
making daily movements = 500 m. Although we reported
one instance of an overland foray between adjacent ponds.
itremains unknown how far and frequently P. concinna may
travel overland. Because we lacked the sample size for
statistical inference. further work needs to be conducted
using more individuals at Round Pond to conclusively
determine if sexual differences exist in either movement or
home range area. This work should also encompass the
entire activity season to examine seasonal differences in
spatial patterns.
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The advance of polymerase chain reaction (PCR) analy-
sis has had an important impact on molecular ecology by
allowing researchers to perform genetic analysis from small
quantities of DNA. This modern technique. using non-lethal
collection methods, is particularly useful when dealing with
threatened species. Though blood sampling represents the
predominant methodology for mammals (Sambrook et al.,
1989), birds (Seutin et al., 1991). and reptiles (Haskell and
Pokras, 1994), blood collection is invasive and can stress the
animal and cause injuries. Alternative non-invasive sam-
pling techniques would be beneficial for turtles and other
small animals where blood sampling is difficult or poten-
tially harmful.

Numerous tissue collection methods and extraction
protocols have been designed to obtain DNA from old, dry,
and degraded samples, such as fish scales (Tessier and
Bernatchez, 1999), otoliths (Hutchinsonetal., 1999), human
fingernails (Ricci and Giovannuci Uzielli, 1996), mammal
hairs (Goosens et al.. 1999), and museum specimens
(Ellegren, 1991: Thomas et al., 1990), among others. Re-




