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The study of movement and home range provides
insight into an organism's activity and habitat utilization.
Initially such studies were conducted using long-term mark
recapture data and various trailing devices but since the

advent of small radio units, the main tool has been radiote-
lemetry. Spatial studies using radiotelemetry in turtles have

increased, emphasizing terrestrial (Schwartz et al., 1984;
Brewster and Brewster, l99l; Smith et al., 1997, 1999),,

semi-aquatic (Rowe and Moll, l99l; Lovich et al., 1992;
Buhlmann, 1995; Lewis and Faulhaber, 1999; Lue and

Chen, 1999; Goodman and Stewart, 2000; Piepgras and

Lang, 2000), and marine species (Seminoff et al., 2002).
Research on primarily aquatic species is most often concen-
trated on terrestrial forays and inter-populational move-
ments (Cagle , 1944; Sexton , 1959; Gibbons, I 970; Obbard
and Brooks, 1980; Congdon et al., 1983; Gibbons et al.,
1983 , 1990; Buhlmann and Gibbons, 2001).

Although important in understanding activity and habi-
tat use, terrestrial movements comprise a small portion of
turtle activity throughout the entire season. For the majority
of the activity season, movements of freshwater turtles are

restricted to aquatic environments and are mainly driven by
resource acquisition (Moll and Legler, 1971; Schubauer et

al., 1990). Recognizing the need for research during the
aquatic period, several recent studies have dealt with the

aquatic activity of lotic species in riverine habitats (Kramer,
1995; Jones , 1996; Magnusson et al ., 1997; Plummer et al.,
I99l). Contrastingly, little research has focused on aquatic
activity in lentic species inhabiting lacustrine systems
(Schubauer et al., I 990). Such studies are essential for
providing a comprehensive understanding of movement
patterns and home range of freshwater turtles.

The river cooter, Pseudenxys concinna, is a broadly
distributed species (Ernst et al., 1994; Seidel and Dreslik,
1996) occupying both riverine and lacustrine habitats
(Marchand, 1942; Fahey, 1987; Buhlmann and Vaughan,
I99l; Dreslik , 1997, 1998) with previous radiotelemetric
research conducted on a riverine population (Buhlmann and

Vaughan, 1991). The objective of our study was to provide
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an estimate of movement and home range areafor a popula-

tion of P. concinna rnhabiting a lacustrine system with the

emphasis on aquatic activity.
Methods Round Pond ts a24.5 ha member of a chain

of floodplain lakes located approximately 4 km west of the

confluence of the Ohio and Wabash rivers in southeastern

Gallatin County, Illinois. A detailed description of the habi-

tat has been published previously (Dreslik, 1991). We used

five single set fyke nets (Vogt, 1980) to capture turtles from
28 June to 29 July 1999. Fyke nets had a l0l cm diameter

mouth;two 5.2mwings, a 15 .2mlead, and 3.8 cm mesh size.

We set nets parallel to the shoreline in a V-formation and

elevated the rear chamber of the trap with a floating air filled
plastic bottle to prevent drowning turtles accidentally. We

notched the marginal scutes of all turtles following Cagle
( 1939), measured maximum plastral length (PL) with tree

calipers (to the nearest mm), and weight using an electronic
balance (to the nearest g). We used two-stage radio transmit-
ters with whip antennae weighing approximately 80 g con-

structed by L&L Electronics (Mahomet, Illinois). All adult
P. concinna captured were fitted with transmitter packages

mounted on the rear of the carapace on the fourth or fifth
pleural scute with the antennae facing posteriorly.

We radiolocated turtles daily between 0900-2000 hrs

but on a few occasions turtles were radiolocated twice per

day.When turtles were radiolocated twice per day, there was

at least an 8 hr interval between radiolocations. To determine
locations, we first recorded the GPS coordinates in Univer-
sal Transverse Mercator (UTM, NAD 83 map datum) for
two reference points with a Garmin@ 12 CX with waypoint
averaging. To obtain the GPS location for each reference

site, we used the mean of ten separate waypoint averaged
measurements taken at each reference site. We placed a

system of marker buoys around the lake then triangulated the

location of each buoy to each reference location with com-
pass bearings. For each turtle location, we recorded compass

bearings to two marker buoys. All compass bearings were

then computed to UTM grid coordinates following the

triangulation methods outlined in White and Garrott ( 1990)

and the coordinates were input into Arc-View@ 3.2a.

We calculated the mean and maximum distance be-

tween successive radiolocations and total distance moved.

To examine possible sample size biases in movement pa-

rameters, we regressed maximum, mean, and total distance

moved to the number of radiolocations with individuals as

the sampling unit. Minimum convex polygons (MCP; Mohr,
1947) were constructed in Arc-View@ 3.2ausing the Animal
Movement extension (Hooge and Eichenlaub, 1991). We

selected the MCP method because of its simplicity, flexibil-
ity in shape, ease in calculation, and the minimal effects of
autocorrelated locations on polygon size (White and Garrott,
1990). However, there are two drawbacks to the MCP
method. First, home range estimates may increase indefi-
nitely with an increasing number of radiolocations (Jenrich

and Turner, 1969) and the polygon may include habitats
unavailable to the study organism. To address the first
drawback, we performed a regression on all MCP areas
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Females
Fl 198 1014
F2 198 943
F3 288 3500
F4 213 r22r
F5 r93 962
F6 219 13 15

459 I 16
115 59
622 l 18
188 94
375 133
173 77

2431 4.6 22
1353 I .8 24
t169 7 .t 16
2248 3.5 25
t328 9.2 I I
1078 3.1 15

Table L. Movement statistics (m), minimum convex polygon
(MCP) area (ha), and number of radiolocations for P. concinncr
radiotracked at Round Pond, Gallatin County, Illinois, during
summer 1999. PL = ffiffi, mass - g.

Daily Movement MCP
PL Mass Max. Mean Total Area ,x

IAA revealed we required at least 15 radiolocations to

adequately determine home range area over this period.

Although F5 and M2 had the largest home ranges for each

sex, IAA determined that 1 I radiolocations were inadequate

for representing home range area. The majority of the 148

radiolocations were clustered in the shallower northern half

of Round Pond (Fig. l). However, some individuals (M1,

F3, F5) utilized the northern two-thirds of Round Pond (Fig.

1). Only l8 radiolocations were in open water > 6 m deep.

Discussion. The majority of movements of P.

concinnawere constrained within Round Pond's boundaries

during the summer for two possible reasons. First, the habitat

may provide ample resources, which are not uniformly
distributed. Thus, movements between different aquatic

habitats and within different regions of the pond are unnec-

essary. Although this explanation does not account for

movements made in search of resources such as nesting sites

and mates, the effects of these factors are minimized in our

study because we focused on adults after the reproductive

and nesting season. The movements we observed may be

driven by foraging and thermal requirements. Primarily
herbivorous throughout its range (Ernst et al., 1994),, P.

concinna is an algal specialist at Round Pound (Dreslik,

1999), thus food resources would be abundant in the shal-

lower regions of the pond where light can penetrate to the

benthos. This partially explains the concentration of loca-

tions in the shallower northern coves. Because no adults

have been observed basking emergently at Round Pond,

despite repeated surveys (Dreslik, unpubl. data) . P. concirtrtct

may use warm shallow water for aquatic thermoregulation.
Because there are limited reports of overland move-

ments in P. cortcirult. tertestrial environments may repre-

sent significant barriers (Minton. I9l2). When aquatic envi-

ronments are in close proximity. short over-land movements

are possible. \{ 1 made a short overland movement of 100-

190 m (the minimum and maximum distances separating the

ponds ) trom Round to Long Pond. Terrestrial movements of
male turtles betrveen aquatic habitats in several other species

are n ell documented (Cagle, 1950; Sexton,1959; Gibbons

et al.. 1990). Additionally, long-term studies indicate that

some individuals, especially semi-aquatic species, utilize
several aquatic habitats during their activity season and

lifetime (Buhlmann, 1995; Burke et al., 1995; Buhlmann

and Gibbons, 2001). Factors such as resource limitations,

unfavorable environmental conditions, and maximizing re-

productive success are postulated to drive inter-populational

movements (Morreale et al., 1984; Gibbons et al., 1990).

Because the overland distance between Round and Long

ponds is short, some individuals may routinely move be-

tween the adjacent ponds. Two adult females captured in

Long Pond in 1996 were subsequently recaptured in Round

Pond in l99l (Dreslik, unpbul. data). Although these move-

ments may not represent overland travel because Round and

Long ponds connect during flood events, they provide

additional affirmation of individuals using both ponds.

Within an activity season, freshwater turtles are capable

of moving great distances with males often making the

Mean
St dev

Males
MI
M2
M3

Mean
St dev

Grand Mean
St dev

241
185
197

32r.9
r9t .3

366.9
249.2

336.9
200.9

t916 629 311 2179
823 133 58 57 6 1 .2

100 I 339 t34 I 841 3.4

99.4 1702.1 4.9
28.8 546.6 2.8

167 .5 I 53 1 .8 5.3
130. | 845.2 2.1

122.1 I 645.3 5.0
7 6.9 610.3 2.6

8

t1
16

versus the respective number of radiolocations to determine

if MCP areadepended upon the number of radiolocations. If
a significant relationship occurs, then the MCP areas are

dependent upon the number of radiolocations and thus

biased. Our second approach used Incremental Area Analy-
sis (IAA), which pools all radiolocations for an individual,
then resamples using bootstrapping to generate a series of
home range estimates from 3 to nradrolocations (Hooge and

Eichenlaub, l99l). If the bootstrap estimates of home range

asymptote as the number of radiolocations increase, then a

sample size bias is not present with respect to an individual.
Because these are aquatic turtles tracked when overland
forays are expected to be minimal, we did not need to
consider potential habitat biases.

Results We radiolocated 6 female and 3 male adult

P. conciruta 8 to 26 tirnes each betr,r'een 8 Julv and 29 Jul1

1999 for an avera-se duration of J.5 u'eeks per turtle (Table

1). Our sample size was too small for statistical comparisons

of movement and home ran-ge area betu een se.\es. \lari-
mum (p - 0.309, 12 =0.146. n = 9). rnean tp - 0.136. rr =
0.288,n-g),andtotal distance move d{7t - 0.311. rr = 0. 1+0.

n =9), were independent of sample size. On averase. tllrtles
moved I22 m between successive radiolocations tTable I ).
Despite having only 8 radiolocations, turtle M I ranked third
in total distance moved and made the lar-eest mor e (Table I :

Fig. 1). Because male Ml moved into a privatelr ou'ned

pond and did not return to Round Pond during the remainder

of the study, we were unable to make additional radioloca-
tions. On average, females moved less than males and male

movements appeared more variable (Table l). How'et'er. if
Ml is considered an outlier, the standard deviations of
female and male movements are similar.

Overall, MCP area was an accurate measure of home

range size because it was independent of the number of
radiolocations (rt = 0.073, p =0.5 18, n = 8). Individually,
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a)
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c)

Figure l' Radiolocation points, movement path (only for Ml), and minimum convex polygons for all radiotracked pseudemys concinnaat Round Pond, Gallatin County, rlinois,.dui'ing iummer tggs. soha tin". -" roud, anh ttrJuanoeo rin" ir u-rtt"u-, r = marker buoys andreferencepoints. a)o=F4, t=M2,* withnuirbers =Ml, u)o=rvrl-i =lz,.l .=r'j,i =io,ajilnr, r =F3.
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longest movements (MacCullough and Secoy, 1983;

Morreale et al., 1 984; Pluto and Bellis, 1988). The variation
of intra-populational movements, however, has received

less attention than extra-populational movements (Gibbons

et al., 1990). On averag e, P. concinna atRound Pond moved

a maximum daily distance of 3 3J m, and total distance of I .6
km. Mean daily movement was 122 m and based on limited
data,, females moved shorter daily distances than males. In
comparison, daily movements of P. concinna rnhabiting a

riverine situation were greater, averaging 340 m (Buhlmann

and Vaughan, 1991).

Three of our individuals moved

radiolocations. In rivers, P. concinnamoved distances greater

than 640 m between resightings and recaptures (Marchand,

1942),, and a maximum movement of 771 m in the New
River, West Virginia has been documented (Buhlmann and

Vaughan, I 991). Further, some individuals in the New River
moved 5l4 m in response to the flooding of basking sites

(Buhlmann and Vaughan, 199 I ). Conversely, in the

Tallapoosa River, Alabama, recaptured P. concinna were
generally ( 100 m from their initial capture point (Fahey,

1987). The data suggest P. concinncr is a vagile species

capable of long-distance aquatic movements within a short

time but to a lesser extent in lacustrine compared to riverine
situations.

Because home range area was independent of the num-

ber of radiolocations and IAA curves reached an asymptote
for all but two individuals, we conclude that our findings
accurately portray summer home range size in P. concinnct.

Because of sample size limitations, we were unable to
statistically compare sexes but males and females had simi-
lar sized home ranges (5.3 and 4.9 ha, respectively). Our
home range estimates were larger than that of a population
in the New River (1.4 ha; Buhlmann and Vaughan, 1991).

Thus, turtles in Round Pond moved shorter distances within
a larger home range compared to a riverine population,
which moved greater distances within a smaller home range

(Buhlmann and Vaughan, 1991).

River cooters (P. concinno) were adept at mot'in-9

through their aquatic environment and capable of routinelr
making daily movements > 500 m. Althou-eh u e reported

one instance of an overland forat, betu'een adjacent ponds.

it remains unknown how far and tiequentll P. concirtrttt ntay

travel overland. Because we lacked the sarnple size for
statistical inference. further u'ork needs to be conducted

using more individuals at Round Pond to conclusively
determine if sexual differerlces erist in either movement or
home range area. This u'ork should also encompass the

entire activity season to examine seasonal differences in
spatial patterns.
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The advance of polymerase chain reaction (PCR) analy-
sis has had an important impact on molecular ecology by
allowing researchers to perform genetic analysis from small
quantities of DNA. This modern technique, using non-lethal
collection methods, is particularly useful when dealing with
threatened species. Though blood sampling represents the

predominant methodology for mammals (Sambrook et al.,
1989), birds (Seutin et al., l99l;. and reptiles (Haskell and

Pokras ,, 1994), blood collection is invasive and can stress the

animal and cause injuries. Alternative non-invasive sam-
pling techniques would be beneficial for turtles and other
small animals where blood sarnpling is difficult or poten-
tially harmful.

Numerous tissue collection methods and extraction
protocols have been designed to obtain DNA from old, dry,
and degraded samples, such as fish scales (Tessier and
Bernat chez, 1999),otoliths (Hutchinson et al ., 1999), humAn
fingernails (Ricci and Giovannuci Uzielli , 1996), rnammal
hairs (Goosens et al., 1999), and museum specilnens
(Ellegren, l99l; Thon-las et al., 1990), among others. Re-


