Kyphosis in a Musk Turtle
(Sternotherus odoratus)
from Ontario, Canada

RAYMOND A. SAUMURE1,2

1Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9 Canada;
2Present Address: Shark Reef at Mandalay Bay, 3950 Las Vegas Boulevard South, Las Vegas, Nevada 89119 USA

Kyphosis has been recorded in many turtle species and families (Lynn, 1937; Ernst, 1976; Plymale et al., 1978; Harding and Bloomer, 1979; Wilhoft, 1980; Rhodin et al., 1984; Stuart, 1996). The deformity has most often been reported for the genera Apalone and Chrysemys (Stuart, 1996). Nixon and Smith (1949) noted that kyphosis had been observed by Hartweg in the common musk turtle, Sternotherus odoratus, but no details were provided. Herein, I report an additional instance of kyphosis in S. odoratus.

A kyphotic adult male musk turtle (Fig. 1) was captured on 25 July 1984 at Big Clear Lake, Arden, Kennebec Township, Frontenac County, Ontario, Canada (44°44'42"N, 76°54'15"W). The specimen had the following maximum dimensions: carapace length = 114.5 mm, carapace width = 75.6 mm, plastral length = 87.3 mm, and the kyphotic shell height was 63.6 mm. Of 39 musk turtles (26 males, 13 females) captured at this site, only this specimen had kyphosis.

Definitions and theories for the cause of kyphosis in turtles have been reviewed by Wilhoft (1980), Rhodin et al. (1984), and Stuart (1996). Kyphosis ("hump-back") is thought to be the result of a premature fusion of the vertebral elements of the vertebral column causing unequal growth rates of the various carapacial components. Such fusion may be brought about by environmental conditions to which eggs, embryos, and hatchlings are exposed. The opposite spinal deformity of lordosis ("sway-back") can be caused by a premature fusion of the dorsal elements of the vertebral column, while allowing continual growth of the ventral vertebral centra, as recorded in cases of infection causing neural synostosis and lordosis in sea turtles (Kochinsky et al., 1995). Neither kyphosis nor lordosis is common, with the overall incidence of spinal deformities calculated at about 0.1% in a sample of over 11,000 sea turtles (Rhodin et al., 1984).

Acknowledgments. — I thank Guy Saumure for field assistance, as well as Francis Cook and Mike Rankin from the Canadian Museum of Nature for the loan of field equipment. James Stuart and Anders Rhodin provided several elusive references. I thank Catherine Saumure, Christopher Shewchuk, and Anders Rhodin for comments on earlier drafts of this manuscript.

LITERATURE CITED


Received: 27 July 1999
Reviewed: 6 February 2001
Revised and Accepted: 6 March 2001